If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2+42x-16=0
a = 49; b = 42; c = -16;
Δ = b2-4ac
Δ = 422-4·49·(-16)
Δ = 4900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4900}=70$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-70}{2*49}=\frac{-112}{98} =-1+1/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+70}{2*49}=\frac{28}{98} =2/7 $
| 6k+4+8k=19 | | -7=-2/3x+5 | | 2-8s=4+5(6-10s) | | 4w-7w-5=16 | | 360°=a+90°+135°+75° | | |3g–1|=19 | | y=(0-3)²+1 | | -1-8x=-1-4x-4x | | 23w-5=21w+5 | | 72+6x=x² | | (8i)(-8i)=0 | | 7-4u=8+5(10-9u) | | 11.3l+10.1l+7=13.24 | | 5(d-6)=70 | | 4/7.n=8 | | 4(b-67)-2=94 | | 3.50*x+10=5.25*x-11 | | x^2/(.14-x)=5.4x10^-6 | | G=-5/2x | | X+4=2x-18 | | x³=1723 | | 4x(5x^2+3x-9)=0 | | 10x-(-13)=48+3x | | 7+8x4=0-5 | | 4=2(7r+5)+6 | | 5x+3=-5x+83 | | 110x+80=90 | | Z=4-4a | | 3(-6)-9y=-18 | | 7(c-3)=49 | | x/16+101=99 | | 7=8x4=0-5 |